Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends
نویسندگان
چکیده
Background: Significant amount of research, both experimental and numerical, has been conducted to study the mechanical behaviour of biodegradable polymer PL(L)A due to its wide range of applications. However, mechanical brittleness or poor elongation of PL(L)A has limited its applications considerably, particularly in the biomedical field. This study aims to study the potential in improving the ductility of PLA by blending with PBS in varied weight ratios. Methods: The preparation of PLA and PBS blends, with various weight ratios, was achieved by melting and mixing technique at high temperature using HAAKETM Rheomix OS Mixer. Differential Scanning Calorimetry (DSC) was applied to investigate the melting behaviour, crystallization and miscibility of the blends. Small dog-bone specimens, produced by compression moulding, were used to test mechanical properties under uniaxial tension. Moreover, an advanced viscoplastic model with nonlinear hardening variables was applied to simulate ratedependent plastic deformation of PLA/PBS blends, with model parameters calibrated simultaneously against the tensile test data. Results: Optical Microscopy showed that PBS composition aid with the crystallization of PLA. The elongation of PLA/PBS blends increased with the increase of PBS content, but with a compromise of tensile modulus and strength. An increase of strain rate led to enhanced stress response, demonstrating the time-dependent deformation nature of the material. Model simulations of time-dependent plastic deformation for PLA/PBS blends compared well with experimental results. Conclusions: The crystallinity of PLA/PBS blends increased with the addition of PBS content. The brittleness of pure PLA can be improved by blending with ductile PBS using mechanical mixing technique, but with a loss of stiffness and strength. The tensile tests at different strain rates confirmed the time-dependent plastic deformation nature of the blends, i.e., viscoplasticity, which can be simulated by the Chaboche viscoplastic model with nonlinear hardening variables.
منابع مشابه
Miscibility, Morphology and Crystallization Behavior of Poly(Butylene Succinate-co-Butylene Adipate)/Poly(Vinyl Phenol)/Poly(l-Lactic Acid) Blends
Amorphous poly(vinyl phenol) (PVPh) is introduced into poly(butylene succinate-cobutylene adipate)/poly(L-lactic acid) (PBSA/PLLA) blends via solution casting. Fourier transform infrared spectroscopy (FTIR) analysis verifies that intermolecular hydrogen bonding formed in PBSA/PVPh/PLLA blends. The miscibility between PBSA and PLLA is improved with PVPh incorporation as evidenced by approaching ...
متن کاملWater absorption and degradation characteristics of chitosan-based polyesters and hydroxyapatite composites.
Blends of chitosan and biodegradable synthetic aliphatic polyesters (polycaprolactone, poly(butylene succinate), poly[(butylene succinate)-co-adipate], poly[(butylene terephthalate)-co-adipate], and poly(lactic acid)) were injection-molded. These samples were immersed in isotonic solution at 37 degrees C for a period of 60 d. The water uptake and the degradation properties, as measured by the l...
متن کاملProcessing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films
Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) based films containing two different plasticizers [Acetyl Tributyl Citrate (ATBC) and isosorbide diester (ISE)] at three different contents (15 wt %, 20 wt % and 30 wt %) were produced by extrusion method. Thermal, morphological, mechanical and wettability behavior of produced materials was investigated as a function of plasticizer co...
متن کاملPoly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion
Poly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LA...
متن کاملMicrobial Degradation Behavior in Seawater of Polyester Blends Containing Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)
The microbial degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and its compound with several polyesters such as poly(butylene adipate-co-telephtharate) (PBAT), poly(butylene succinate) (PBS), and polylactic acid (PLA) in seawater was tested by a biological oxygen demand (BOD) method. PHBHHx showed excellent biodegradation in seawater in this study. In addition, the...
متن کامل